

Mathematics

Intent and Purpose
Implementation and Pedagogy
Key Concepts
ContentSpine
Progression Maps showing progression in
calculation strategies
KIRFS (Key Instant Recall Facts)

Mathematics Intent and Purpose

Why do we teach mathematics?

Mathematics is a creative and highly interconnected discipline that has been
developed over centuries.
It is essential to everyday life, critical to science, technology and engineering, and necessary for financial literacy and most forms of employment.

A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject.

What is the aim of our curriculum for mathematics?

Our curriculum for mathematics aims to ensure that all pupils:
-become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
-reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
-can solve problems by applying their mathematics toa variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. They should also be able to apply their mathematical knowledge to science and other subjects.

Mathematics Implementation and Pedagogy

How is mathematics taught at Shinfield Infant and Nursery School?

- Maths at Shinfield Infant and Nursery School is taught using a 'mastery' approach. Mastering maths means pupils acquiring a deep, longterm, secure and adaptable understanding of the subject and being able to apply concepts in many different contexts. Maths is taught in mixed-ability class groups, where the focus is on all pupils working together on the same lesson content at the same time. This ensures that all can master concepts before moving to the next part of the curriculum sequence. If a pupil fails to grasp a concept or procedure, this is identified quickly, and early intervention ensures the pupil can move forward.
- Teaching is based on the White Rose Maths Hub approach, with lesson design identifying the new mathematics that is to be taught, the key points and potential misconceptions to create a carefully sequenced journey through the learning. Procedural fluency and conceptual understanding are developed in tandem because each supports the development of the other.
- White Rose resources are supplemented where appropriate by additional resources identified by teachers e.g. White Rose planning, Primary Stars, Twinkl 'Diving into Mastery'. Discussion is a key part of teaching, with children being expected to explain their approach to questions; this allows for the development of deeper understanding as well as providing assessment opportunities. Each lesson follows the 'I do, We do, You do' approach with teacher models of the concept being followed by shared work before independent 'Intelligent Practice' that both reinforces pupils' procedural fluency and develops their conceptual understanding.
- Concrete resources are available in all classrooms, with the expectation that children will move from the use of these through pictorial representations to abstract as they gain a secure mental model of the concept. Throughout EYFS and KS1 children are introduced to a range of concrete resources and are strongly encouraged to use these to develop a deeper understanding of concepts by seeing it visually, rather than as an abstract.
- Key facts such as multiplication tables and addition fact are learnt to automaticity to avoid cognitive overload in the working memory and enable pupils to focus on new concepts.
- Instant recall of key number facts is practised to build on a secure and genuine mathematical understanding in order for pupils to move forward and solve increasingly complex problems. Each group is also given a set of KIRFS (Key Instant Recall Facts) to learn every half term with the expectation of instant recall of these facts.

White R@se

Mathematics
 Key Concepts

Mathematics Content Spine

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 1	Place value within 10 (5 weeks approx)	Addition and Subtraction within 10 (5 weeks approx) Geometry (1 week)	Place value within 20 (3 weeks approx) Addition and Subtraction within 20 (3 weeks approx)	Place value within 50 (2 weeks approx) Length and height (2 weeks) Mass and Volume (2 weeks)	Multiplication and Division (3 weeks) Fractions(1 week approx) Geometry-position and direction (1 week approx)	Place value within 100 (2 weeks) Money (1week) Measurement-time (2 weeks)
Year 2	Place Value (5 weeks approx Addition and Subtraction	Addition and Subtraction Geometry - shape (2 weeks approx)	Money (2 weeks approx) Multiplication and Division (5 weeks approx)	Measurement Length and Height Mass, capacity and temperature (5 weeks approx)	Number - Fractions (3 weeks) Measurement - time (3 weeks)	Statistics Geometry position and direction (4 weeks)

Please note that weeks are approximated and time is allowed for consolidation and assessments each term.

Mathematics Progression Map - Number and Place Value

EYFS Goal - Have a deep understanding of number to 10 , including the composition of each number.
Number

Numercical

 patterns- Verbally count beyond 20, recognising the pattern of the counting system;
- Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity;
- Explore and represent patterns within numbers up to 10 , including evens and
- odds, double facts and how quantities can be distributed equally.
Counting and Number Patterns

Comparing Numbers

- Count to a nd a cross 100, forwards a nd backwards, beginning with 0 or 1 , or from a ny given number.
- Count, read and write numbers to 100 in numerals
- Count in multiples of twos, fives and tens.

1 - Given a number, identify one more a nd one less.

$$
2
$$

	Identifying and Representing Numbers	Reading and Writing Numbers and Recognising Place Value	Problem Solving
1	- Identify a nd represent numbers using objects a nd pictorial representations including the number line.	- Rea d a nd write numbers from 1 to 20 in numerals and words.	
2	- Identify, represent and estimate numbers using different representations, including the number line.	- Read a nd write numbers to at least 100 in numerals and in words. - Recognise the place value of each digit in a two-digit number (tens, ones).	- Use place value and number facts to solve problems.

Mathematics Progression Map Addition and Subtraction

EYFS - Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to $\mathbf{1 0}$, including double facts.

	Mental Calculations	Written Calculations	Number Bonds
	- Add and subtract one-digit and two-digit numbers to 20 , induding zero.	Read, write and interpret mathematical statements involving addition (+), s ubtraction (-) a nd equals.	- Represent and use number bonds and related subtraction facts within 20.
2	- add a nd subtract numbers using concrete objects, pictorial re presentations, and mentally, induding: a two-digit number and ones; a two-digit number and tens; two two-digit numbers; three one-digit numbers. - Show that a ddition oftwo numbers can be done in any order (commutative) and subtraction of one number from another cannot.	Add and subtract numbers with up to two digits, using informal a nd formal written meth ods of columnar addition and subtraction.	- Recall and use a ddition and subtraction facts to 20 fluently, and derive and use re lated facts up to 100 .
Problem Solving		Inverse Operations	
1	Solve one-step problems that involve addition and subtraction, using concrete objects and pictorial re presentations, and missing number problems such as: $7=$ * -9		
2	- Solve problems with addition and subtraction: - using concrete objects and pictorial re presentations, including those involving numbers, quantities and measures - a pplying their increasing knowledge of mental and written methods.	- Recognise a nd use the inverse re lationship between addition a nd subtraction and use this to check calculations and solve missing number problems.	

Key Vocabulary: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

	$9+3=12$ This example shows how bead strings can be used to demonstrate the same method.		
Use number bonds to 10 to make number bonds to 20 Addition Year 1	Use 10s frames and coloured counters (1 frame for the number bond to 10 and 2 frames for the number bond to 20) and Numicon. $\begin{aligned} & 6+4=10 \\ & 4+6=10 \\ & 10-4=6 \\ & 10-6=4 \end{aligned}$	Colour in dots (2 different colours to make the bonds) on 10 s frames (1 frame for the number bond to 10 and 2 frames for the number bond to 20). $\begin{aligned} & 6+4=10 \\ & 4+6=10 \\ & 10-4=6 \\ & 10-6=4 \end{aligned}$	$7+3=10$ so $17+3=20$ or $13+7=20$

Year 1 Subtraction

Objective/Strategy	Concrete	Pictorial	Abstract
Taking away 1-digit then 2-digit numbers up to 20 (start by not crossing 10 , then crossing 10) Subtraction Year 1	Use physical objects, counters, cubes, bead strings, Numicon, etc. to show how objects can be taken away. $4-2=2$ $20-7=$ \qquad	Cross out drawn objects to show what has been taken away, count back on a number line, bar model. $15-3=$ \square	$\begin{aligned} & 7-4=3 \\ & 16-9=7 \end{aligned}$ Put 13 in your head, count back 4. What number are you at?
Make 10 when counting back to cross over 10 Subtraction Year 1	$14-5=$ Make 14 on the ten frame with counters. Take 4 away to make ten, then take one more away so that you have taken 5 .	Use a number line, jump back 3 first, then another 4. Use ten as the stopping point. Use partwhole model. $13-7=6$	$16-8$ How many do we take off first to get to 10 ? How many left to take off?
Find the difference (relate to addition, counting on as well as counting back)	Compare objects and amounts Lay objects to represent bar model.	Count on using a number line to find the difference.	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister?

Key Vocabulary : take away, less than, the difference, subtract, minus, fewer, decrease.

Subtraction Year 1			
Represent and use number bonds and related subtraction facts within 20 . Include subtracting zero. Part-whole model Subtraction Year 1	Link to addition. $\begin{aligned} & 12+1=13 \\ & 13-1=12 \end{aligned}$ Use 10 s frames and 2 different coloured counters to model inverse. If 10 is the whole and 6 is one of the parts, what is the other part? $10-6=4$	Use part-whole model (dienes drawn), bar model and draw dots in 10 s frames.	Move to using numbers within the part-whole model. Include missing number problems: $\begin{aligned} & 12-?=5 \\ & 7=12=? \end{aligned}$

Key Vocabulary : take away, less than, the difference, subtract, minus, fewer, decrease.

Year 2 Addition up to 100 and starting to cross over 100			
Objective/Strategy	Concrete	Pictorial	Abstract
Adding multiples of ten to make 100 and numbers up to 100 . Addition Year 2	Model creating number bonds using a 10s frame to represent 100 and 2 different coloured counters, dienes or Numicon 10s. (Each counter represents 10 in this example) $60+40=100$	Drawing of 10 s rods, 10 s numberline or 10 s place value counters on a 10 s frame to represent 100 . $60+40=100$	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$ Recite number bonds to 100
Use known addition number facts to make 20 to explore subtraction facts (to make 20 and numbers up to 20) links to Year 2 subtraction Addition Year 2	Children explore ways of making numbers within 20 using part-whole model, counters or cubes and 2 tens frames with 2 different colour counters.	Use bar model, number lines, partwhole model with numbers, drawings of 10 s frames with dots.	Explore commutativity of addition and make list. E.g. $\begin{array}{ll} 12+3=15 & 15=12+3 \\ 3+12=15 & 15=3+12 \end{array}$ Explore the concept of the inverse relationship of addition and subtractions and use this to check calculations. E.g. $12+3=15$ So $15-3=12$ and $15-12=3$

Add a two-digit number and ones (not bridging 10s, so no exchanging)	Use dienes and place value chart. Add ones/units first.	Use part-whole model or number track to model. When bridging 10 s use a number line, draw dienes in place value chart. Add ones/units first.	Lead into recording in column format, to reinforce place value and prepare children for formal written methods with larger values.
Addition Year 2 See also Empty Number line method as an alternative (below)			$\begin{array}{r} 20+3 \\ +30+4 \\ \hline 50+7 \\ =57 \\ \hline \end{array}$
Add a 2-digit number and tens Addition Year 2	$25+10=35$ Explore that the ones digit does not change. Use dienes in a place value chart. Add ones/units first.	Draw dienes in the place value chart to help to lead into column addition. Look at ones/units column first to see if there's anything to add. $25+10=35$	$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \end{aligned}$
Add two, 2-digit numbers (no exchanging) Addition Year 2	$45+23=$ Use dienes in a place value chart. Add ones/units first.	Draw dienes in the place value chart to help to lead into column addition. Add ones then add tens.	$\begin{aligned} & 27+31=58 \\ & 31+\square=58 \end{aligned}$

Key Vocabulary: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

	Add the ones then add the tens.		
Regrouping to make 10 This is an essential skill for column addition Addition Year 2	Start with the bigger number and use the smaller number to make 10 . Use ten frames. $\begin{aligned} & 17+5=22 \\ & 17+3=20 \\ & 20+2=22 \end{aligned}$ Explore the pattern $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Regroup or partition the smaller number using the part-whole model to make 10 , a number line, 10 s frames.	Regroup to make other multiples of $20+$ E.g. 33+9= $33+7+2=$
Add two numbers exchanging 1s for 10 s Addition Year 2	Model using dienes on a place value chart, exchange ten 1 s for a tens rod and move that with the 10s. Add ones/units first.	Model drawing dienes on a place value chart, exchange ten 1 s for a tens rod and move that with the 10 s by crossing out the ten 1 s and drawing the exchanged 10 under the tens column. 28+7=	Use expanded column addition format. $\begin{array}{r} 50+8 \\ 40+3 \\ \hline 90+11 \\ =10 \end{array}$

Key Vocabulary: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Add three 1-digit Numbers Addition Year 2	Combine to make 10 first if possible, or bridge 10 then add third digit. Use 3 different coloured counters, cubes.	Regroup and draw representation. $+f^{\text {fotef }}=15$	Combine the two numbers that make/ bridge ten then add on the third. $\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$
Add with an empty number line Addition Year 2	Add multiples of 10 Add 1-digit numbers Add pairs of 2-digit numbers	For concrete support use a 100 square alongside or dienes. For the pictorial stage, add on ready drawn number lines.	Independently use the empty number line method (apparatus can still be used alongside).

Key Vocabulary : sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Key Vocabulary : take away, less than, the difference, subtract, minus, fewer, decrease.

		$13-5=$ $12-5=$	
Subtract a 1-digit number from a 2-digit (no exchanging) Subtraction Year 2	Use dienes, subtract by moving ones away. Subtract ones/units first. Step 1 Subtract the ones. 8 ones -3 ones $=5$ ones Step 2 Subtract the tens. $28-3=25$	Use drawings of dienes in a place value chart and cross out to subtract. Step 1 Subtract the ones. 8 ones -3 ones $=5$ ones Step 2 Subtract the tens. $28-3=25$	$27-5=$

Key Vocabulary : take away, less than, the difference, subtract, minus, fewer, decrease.

Key Vocabulary : take away, less than, the difference, subtract, minus, fewer, decrease.

Key Vocabulary : take away, less than, the difference, subtract, minus, fewer, decrease.

Mathematics Progression Map Multiplication and Division

EYFS Goal - Automatically recall some double facts to 10.

- Explore and represent patterns within numbers up to 10, including evens and odds, double facts and how quantities can be distributed equally.

Multiplication and Division Facts	Order of Operations	
$\mathbf{1}$		Mental Calculations
$\mathbf{2}$• Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables,	Show that multiplication oftwo numbers can be done in any order (commutative) and division ofone number byanother cannot.	

Problem Solving

1 - Solve one-step problems involving multiplication a nd division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

2 - Solve problems involving multiplication a nd division, using materials, a rrays, re peated addition, mental methods, and multiplication and division facts, including problems in contexts.

Written Calculations

1

[^0]| Year 1 Multiplication | | | |
| :---: | :---: | :---: | :---: |
| Objective/Strategy | Concrete | Pictorial | Abstract |
| Doubling
 Multiplication Year 1 | Use practical activities using manipulatives including cubes and Numicon to demonstrate doubling. | Draw pictures to show how to double numbers.
 Double 4 is 8 | Partition a number and then double each part before recombining it back together. |
| Counting in multiples $(2 s, 5 s, 10 s)$
 Multiplication Year 1 | Count the groups of 2,5 or 10 using bead strings, number lines, 100 square, Numicon, looking at images of groups. Children could use their fingers as they are counting. | Children draw representations to show counting in multiples. | Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 2,4,6,8,10 \\ & 5,10,15,20,25,30 \end{aligned}$ |

Key Vocabulary : double, times, multiplied by, the product of, groups of, lots of, equal groups.

Making equal groups and counting the total Multiplication Year 1	Use different objects to add equal groups.	Draw and make representations. $\text { Draw to show } 2 \times 3=6$	$4 \times 2=8$
Repeated addition Multiplication Year 1	Use different objects to add equal groups e.g. Numicon, cubes, counters, bead strings.	Draw pictures to show solutions. Jump in steps on a number line. There are 3 sweets in one bag. How many sweets are in 5 bags altogether?	Write addition sentences to describe objects and pictures.
Understanding Arrays Multiplication Year 1	Use objects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc.	Draw representations of arrays to show understanding.	$\begin{aligned} & 3 \times 2=6 \\ & 2 \times 3=6 \end{aligned}$

Key Vocabulary : double, times, multiplied by, the product of, groups of, lots of, equal groups.

Year 1 Division			
Objective/Strategy	Concrete	Pictorial	Abstract
Division as sharing (children do not need to be familiar with the symbol yet) Division Year 1	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures and bar models to share quantities. E.g draw pictures of sharing 10 muffins between 2 plates. $12 \div 4=3$	12 shared between 3 is 4 . $(12 \div 3=4)$
Introduce division as grouping (children do not need to be familiar with the symbol yet) Division Year 1	Divide quantities into equal groups e.g. 20 counters in total how many equal groups of $\underline{2}$ can you make? Use cubes, counters, objects or place value counters to aid understanding.	If you have a total of 12, how many equal groups of 3 will you have? Use a number line or a bar model. $12 \div 3=4$ 20 \square $20+5=?$	Divide 28 into 4 s. How many equal groups do you get? $(28 \div 4 \equiv)$

Key language: share, group, divide, divided by, half.

Year 2 Multiplication Children should be able to recall and use the multiplication and division facts for 2, 5 and 10 x table Links between multiplication and division in the division section			
Objective/Strategy	Concrete	Pictorial	Abstract
Counting in multiples of 3 (recap 2, 5 and 10) Multiplication Year 2	Count the groups of 2, 5, 10 and $3 s$ using bead strings, number lines, 100 square, Numicon, looking at images of groups.	Draw number lines counting in groups for hops.	Count in multiples of a number aloud. Write sequences with multiples of numbers (fill in missing numbers from pattern). $0,3,6,9,12,15$
Using arrays to solve multiplication calculations Multiplication Year 2	Use objects including dienes laid out in arrays to find the answers to $3 \times 5,3 \times 12$ etc.	Draw representations of arrays to solve multiplication calculations.	Write different calculations for an image of an array including + and x . $\begin{aligned} & 5+5+5+5=20 \\ & 4+4+4+4+4=20 \\ & 4 \times 5=20 \\ & 5 \times 4=20 \end{aligned}$

Key Vocabulary : double, times, multiplied by, the product of, groups of, lots of, equal groups.

Key language: share, group, divide, divided by, half.

Division with arrays (link division and multiplication- Inverse)	Link division to multiplication by creating an array using cubes, counters, Dumicon E.g. for $3 \times 5=15$ (3 rows of 5)	Draw an array and use lines to split the array into groups to make multiplication and division Sentences. Group the socks intopars	Find the inverse of multiplication and division sentences by creating eight linking
number sentences			

Key language: share, group, divide, divided by, half.

Mathematics Progression Map Fractions

EYFS Goal - Automatically recall some double facts to 10.

- Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally.

Counting in Fractions
Recognising Fractions

- Recognise, find and name a half as one of two equal parts of an object, shape or quantity.
Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.
- Pupils should count in
- Recognise, find, name a nd write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of
- Write simple fractions e.g. $1 / 2$ of $6=3$ and recognise the equivalence of $\frac{2}{4}$ and $1 / 2$. a length, shape, set of objects or quantity

Mathematics Progression Map -
 Measures

Reception

Development Matters Compare length, weight and capacity

Statement

Comparing and Estimating

- Compare, describe a nd solve practical problems for: lengths and heights (e.g. long/short, longer/shorter, tall/short, double/half); mass/weight (e.g. heavy/light, heavier than, lighter 1 than); capacity a nd volume (e.g. full/empty, more than, less than, half, half full, quarter); time (e.g. quicker, slower, earlier, later).
- Sequence events in chronological order using language.
- Compare and order lengths, mass, volume/capacity a nd re cord the results using>, <a nd =.

2 - Compare and sequence intervals of time.

Measuring and Calculating

1 - Meas ure and begin to record the following: lengths and heights; mass/weight; ca pacity and volume; time (hours, minutes, seconds)
1 - Recognise and know the value of different denominations of coins and notes.

- Choose and use appropriate standard units to estimate a nd measure length/height in any direction (m/cm); mass (kg/g);temperature (${ }^{\circ} \mathrm{C}$); ca pacity (litres $/ \mathrm{ml}$)

2 - Re cognise a nd use symbols for pounds ($£$) a nd pence (p); combine a mounts to make a particular value.

- Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change.

Mathematics Breadth and
 Progression Map -
 Measures

Telling the Time

1 - Tell the time to the hour a nd half past the hour and draw the hands on a clock face to show these times.

- Recognise a nd use language relating to dates, including days of the week, weeks, months and years.

2 - Tell a nd write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.
Know the number of minutes in an hour and the number of hours in a day.

Converting Units of Measurement

2 - Know the number of minutes in an hour a nd the number of hours in a day.

Mathematics Progression Map Geometry : Properties of Shapes

Reception

Development Matters
Statement

Select, rotate and manipulate shapes to develop spatial reasoning skills.
Compose and decompose shapes so that children recognise a shape can have other shapes within it, just as numbers can.

Identifying and Drawing Shapes and their Properties

Comparing and Classifying Shapes
1
Recognise a nd name common 2-D a nd 3-D shapes, including: 2-D shapes e.g. rectangles (including squares), ci rcles a nd triangles; 3-D shapese.g. cuboids (including cubes), pyramids and spheres.

- Identify a nd describe the properties of 2-D shapes, induding the number of sides a nd line symmetry in a vertical line
- Identify a nd describe the properties of 3-D shapes, induding the number of edges, vertices a nd faces.
- identify 2-D shapes on the surface of 3-D shapes.

Mathematics Breadth and
 Progression Map -
 Geometry: Position and Direction

Position, Direction and Movement

Pattern
1 - Des cribe position, dire ction and movement, including half, quarter and three-quarter turns.

- Use mathematical vocabulary to describe position, dire ction and movement including
- Order and arrange combinations of mathematical objects in patterns and sequences.

2 movement in a straight line a nd distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise a nd anti-dockwise).

EYFS Mathematics

Key Instant Recall Facts
KIRFs

Autumn Term 1 - I can say the numbers from 0 to 5 and back from 5 to 0 in order.
Autumn Term 2 - I can say the numbers from 0 to 10 and back from 10 to 0 in order.
Spring Term 1 - I can partition numbers to 5, into two groups.

Spring Term 2 - I can partition numbers, to 10, into two groups.
Summer Term 1 - I can count, read and write numbers to 20.

Summer Term 2 - I can use physical representations to add and subtract two single digit numbers and count on or back to find the answer.

YEAR 1 Mathematics
 Key Instant Recall Facts
 KIRFs

Autumn Term 1 - I know one more and one less with numbers up to 20.
Autumn Term 2 - I know number bonds for each number to 6 .
Spring Term 1 - I know number bonds for each number up to 10 .
Spring Term 2 - I know doubles and halves of numbers to 10
Summer Term 1 - I can tell the time using o'clock and half past.
Summer Term 2 - I know number bonds for each number from 6 to 9 .

> YEAR 2 Mathematics Key Instant Recall Facts KIRFs

Autumn Term 1 - I know number bonds to 20 .

Autumn Term 2 - I know doubles and halves of numbers to 20 .

Spring Term 1 - I know the multiplication and division facts for the 2 times table.
Spring Term 2 - I know the multiplication and division facts for the 10 times table.
Summer Term 1 - I can tell the time using quarter past and quarter to.
Summer Term 2-I know the multiplication and division facts for the 5 times table.

[^0]: - Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division ((\div) a nd equals ($=$) signs.

